
International Journal of Information Technology and Knowledge Management
July-December 2009, Volume 2, No. 2, pp. 277-281

ANALYSIS AND DESIGN OF CORE METRICS
FOR MODERN SOFTWARE PROJECTS

K. P. Yadav* & Raghuraj Singh**

Size measurement methods have played a key role in helping to solve real-world problems of estimating, supplier/customer
disputes, performance improvement and the management of outsourced contracts. We would like to say that estimating and
managing a project’s effort, staffing, schedule, cost, risks, quality and other factors is crucial. Yet all these are measures of
input. Process management is enabled by feedback loops. So it is also necessary to measure the output from the software
process. This starts with measurement of the size of the requirements. To solve a problem, it is necessary to measure its size,
in order to assess the various solution options, calculate the relative costs, compare the benefits, before finally committing to
one preferred approach.

* Dronacharya College of Engg., Greater Noida, U.P.
Email: karunesh732@yahoo.co.in

** Deptt. of CSE, H.B.T.I., Kanpur, U.P.
Email: raghurajsingh@rediffmail.com

SOFTWARE PROJECT / ENGINEERING METRICS

Many different metrics may be of value in managing a
modern process/projects. I have settled on EIGHT CORE
METRICS that should be used on all types of modern
software projects, in which four are management metrics
and four are quality metrics. These may be called as
indicators.

a) Management Metrics

� Work and progress
� Budgeted cost and expenditures

� Staffing and tem dynamics

� Software project control panel

b) Quality Metrics

� Change traffic and stability

� Breakage and modularity

� Rework and adaptability
� Mean time between failures (MTBF) and maturity

The following Table describes the core software metrics.
Each metric has two dimensions: a static value used as an

Table
Overview of the Eight Core Metrices

Metric Purpose Perspectives

Work and progress Iteration planning, plan vs. actuals, SLOC, function points, object points,
management indicator scenarios, test cases, SCOs

Budgeted cost and expenditures Financial insight, plan vs. actuals, Cost per month, full time staff per month,
management indicator percentage of budget expended

Staffing and term dynamics Resource plan vs. actuals, hiring rate, People per month added,
attrition rate people per month leaving

Software project control panel To show current status of the project Overall project values, thresholds of projects

Change traffic and stability Iteration planning, management indicator of SCOs opened vs. SCOs closed, by type
Schedule convergence (0,1,2,3,4), by release/ component/subsystem

Breakage and modularity Convergence, software scrap, quality Reworked SCOs per change, by type (0, 1, 2,
indicator 3, 4), by release/component/subsystem

Rework and adaptability Convergence, software reworked, quality Average hours per change by type (0,1,2,3,4),
indicator by release/component/subsystem

MTBF and maturity Test coverage/adequacy, robustness for use, Failure counts, test hours until failure,
quality indicator by release/component/subsystem

objective, and dynamic trend used to manage the
achievement of that objective. While metrics values provide
one dimension of insight, metrics trends provide a more
important perspective for managing the process. Metrics

��� �������	
	����
	���
	�������

COM6\D:\HARESH\11-JITKM

trends with respect to time provide insight into how the
process and product are evolving. Iterative development is
about managing change, and measuring change is the most
important aspect of the metrics program. Absolute values
of productivity and quality improvement are secondary issue
until the fundamental goal of management has been
achieved: predictable cost and schedule performance for a
given level of quality.

The eight core metrics can be used in numerous ways
to help manage projects and organizations. In an iterative
development project or an organization structured around a
software line of business, the historical values of previous
iterations and projects provides precedents data for planning
subsequent iterations and projects. Consequently, once
metrics collection is ingrained, a project or organization can
improve its ability to predict the cost, schedule, or quality
performance of future work activities.

The eight core metrics are based on common sense and
field experience with both successful and unsuccessful
metrics program. Their attributes include the following:

� They are simple, objective, easy to collect, easy to
interpret, and hard to misinterpret.

� Collection can be automated and no intrusive.

� They provide for consistent assessments
throughout the life cycle and are derived from the
evolving product baselines rather than from a
subjective assessment.

� They are useful to both management and
engineering personnel for communicating progress
and quality in a consistent format.

� Their fidelity improves across the life cycle.

Management Metrics

There are four fundamental sets of management metric:
technical progress, financial status, staffing progress,
and current project status/value. By examining these
perspectives, management can generally assess whether a
project is on budget and on schedule. Financial status is
very well understood; it always has been. Most managers
know their resource expenditures in terms of costs and
schedule. The problem is to assess how much technical
progress has been made. Conventional projects whose
intermediate products were all paper documents relied on
subjective assessments of technical progress or measured
the number of documents competed. While these documents
did reflect progress in expending energy, they were not very
indicative of useful work being accomplished.

The management indicators not very recommended
here include standard financial status primary on an earned
value system, objective technical progress metrics tailored

to the primary measurement criteria for each major team of
the organization, and staffing metrics that provide insight
into team dynamics.

Work and Progress

The various activities of an iterative development project
can be measured by defining a planned estimate of the work
in an objective measure, then tracking progress (work
completed over time) against that plan. Each major
organization team should have at least one primary progress
that it is measured against. For the standard teams the default
perspectives of this metric would be as follows.

� Software architectures team: use cases
demonstrated

� Software development team: SLOC under baseline
change management, SCOs closed.

� Software management team: milestones completed.

Budgeted Cost and Expenditures

To maintain management control, measuring cost
expenditure over the project life cycle is always necessary.
Through the judicial use of the metrics for work and
progress, a much more objective assessment of technical
progress can be performed to compare with cost
expenditures. With an iterative development process, it is
important to plan the near-term activities (usually a window
of time less than six months) in detail and leave the far-
term activities as rough estimates to be refined as the current
iteration is winding down and planning for the next iteration
becomes crucial.

Tracking financial progress usually takes on an
organization-specific format. One common approach to
financial performance measurement is use of an earned value
system, which provides highly details cost and schedule
insight. Its major weakness for software projects has
traditionally been the inability to assess the technical
progress (% complete) objectively and accurately. While this
will always be the case in the engineering stage of a project,
earned value systems have proved to be effective for the
production stage, where there is high-fidelity tracking of
actual versus plans predictable results. The other core
metrics provide a framework for detailed and realistic
quantifiable backup data to plan and track against, especially
in the production stage of software, when the cost and
schedule expenditures are highest.

Staffing and Team Dynamics

An iterative development should start with a small team until
the risks in the requirements and architecture have been
suitable resolved. Depending on the overlap of iterations
and other project-specific circumstances, staffing can vary.

	�	������	�
�
�����������
�����
������
���
�
�������	
���
������ ���

COM6\D:\HARESH\11-JITKM

For discrete, one-of-a-kind development efforts (such as
building a corporate information system), the staffing profile
would be typical. It is reasonable to expect the maintenance
team to be smaller than the development team for these sorts
of development. For a commercial product development,
the sizes of the maintenance and development teams may
be the same. When long-lived, continuously improved
products are involved, maintenance is just continuous
construction of new better releases.

Tracking actual versus planned staffing is a necessary
and well-understood management metric. There is one other
important management indicator of changes in project
momentum: the relationship between attrition and additions.
Increases in staff can slow overall project progress as new
people consume the productive time of existing people in
coming up to speed. Low attribution of good people is a
sign of success. Engineers are highly motivated by making
progress in getting something to work; this is the recurring
theme underlying an effect iterative development process.
If this motivation is not there, good engineers will migrate
elsewhere. An increase in unplanned attribution-namely,
people leaving a project prematurely-is one of the most
glaring indicators that a project that a project is destined
for trouble. The causes of such attrition can vary, but they
are usually personnel dissatisfaction with management
methods, lacks of teamwork, or probability of failure in
meeting the planned objectives.

Software Project Control Panel

The idea is to provide a display panel that integrates data
from multiple sources to show the current status of some
aspect of the project. For example, the software project
manager would want to see a display with overall project
values, a test manager may want to see a display focused
on metrics specific to a upcoming beta release, and
development managers may be interested only in data
concerning the subsystems and components for which they
are responsible. The panel can support standard features
such as warning lights, thresholds, variable scales, digital
formats, and analog formats to present an overview of the
current situation. It can also provide extensive capability
for detailed situation analysis. This automation support can
improve management insight into progress and quality
trends and improve the acceptance of metrics by the
engineering team.

Quality Metrics

The four quality metrics are based primarily on the
measurement of software change across evolving baselines
of engineering data (such as design models and source code).

Change Traffic and Stability

Overall change traffic is one specific indicator of progress
and quality. Change traffic is defined as the number of

software change orders opened and closed over the life cycle.
This metric can be collected by change type, by release,
across all release, by team, by components, by subsystem,
and so forth. Coupled with the work and progress metrics,
it provides insight into the stability of the software and its
convergence towards stability (or divergence towards
instability). Stability is defined as the relationship between
opened versus closed SCOs.

The next three quality metrics focus more on the quality
of the product.

Breakage and Modularity

Breakage is defined as the average extent of change, which
is the amount of software baseline that needs rework (in
SLOC, function points, components, subsystems, files, etc.).
Modularity is the average breakage trend over time. For a
healthy project, the trend expectation is decreasing or stable.

This indicator provides insight into the benign or,
malignant character of software change. In a mature
interactive development process, earlier changes are
expected to result in more scrap than later changes. Breakage
trends that are increasing with time clearly indicate the
product maintainability is suspect.

Rework and Adaptablity

Rework is defined as the average cost of change, which is
efforts to analyze, resolve, and retest all charges to software
baselines. Adaptability is defined as the rework trend over
time. For a healthy project, the trend expectation is
decreasing or stable.

Not all changes are created equal. Some changes can
be made in a staff-hour, while others take staff-weeks. This
metric provides insight into rework measurement. In a
mature iterative development process, earlier changes
(architectural changes, which affect multiple components
and people) are expected to require more rework than later
changes (Implementation changes, which tend to be
confined to a single components or person). Rework trends
that are increasing with time clearly indicates that product
maintainability is suspect.

MTBF and Maturity

MTBF is the average usages time between software faults.
In general terms, MTBF is computed by dividing the test
hours by the number of type 0 and type 1 SCOs. Maturity
is defined as the MTBF trend over time.

Early insight into maturity requires that an effective test
infrastructure be established. Conventional testing
approaches for monolithic software programs focused
on achieving complete coverage of every line of code,
every branch, and so forth. In today’s distributed and

��� �������	
	����
	���
	�������

COM6\D:\HARESH\11-JITKM

componentized software systems, such complete test
coverage is achievable only for discrete components.
Systems of components are more efficiently tested by using
statistical techniques. Consequently, the maturity metrics
measure statistics over usage time rather than product
coverage.

Software errors can be categorized into two types:
deterministic and nondeterministic. Physicist would
characterize these as Bohr-bugs and Heisen-bugs,
respectively. Bohr-bugs represent a class of errors that
always results when the software is stimulated in a certain
way. These errors are predominantly caused by coding
errors, and changes are typically isolated to a single
component. Heisen-bugs are software faults that are
coincidental with a certain probabilistic occurrence of a
given situation. These errors are almost always design errors
(frequently requiring changes in multiple components) and
typically are not repeatable even when the software is
stimulated in the same apparent way. To provide adequate
test coverage and resolve the statistically significant Heisen-
bugs, extensive statistical testing under realistic and
randomized usage scenarios is necessary.

Conventional software programs executing a single
program on a single processor typically contained only
Bohr-bugs. Modern, distributed systems with numerous
interoperating components executing across a network of
processors are vulnerable to Heisen-bugs, which are far more
complicated to detect, analyze, and resolve. The best way
to mature a software product is to establish an initial test
infrastructure that allows execution of randomized usages
scenarios early in the life cycle and continuously evolves
the breadth and depth of usages scenarios to optimize
coverage across the reliability-critical components.

The basic characteristics of a good metric are as follows:

1. It is considered meaningful by the customer,
manager, and performer.

2. It demonstrates quantifiable correlation between
process perturbations and business performance.
The only real organizational goals and objectives
are financial: cost reduction, revenue increase, and
margin increase.

3. It is objective and unambiguously defined.
Ambiguity is minimized through well-understood
units of measurement (such as staff-month, SLOC,)

4. It displays trends. This is an important
characteristic. Understanding the change in a
metrics value with respects to time, subsequent
projects, subsequent releases, and so forth is an
extremely important perspective, especially for
today’s iterative development models. It is very rare
that a given metric drives the appropriate action
directly.

5. It is a natural by-product of the process. The metric
does not introduce new artifacts or overhead
activities; it is derived directly from the mainstream
engineering and management workflows.

6. It is supported by automation. Experience has
demonstrated that the most successful metrics are
those that are collected and reported by automated
tools, in part because software tools require
rigorous of the data they process.

Value judgments cannot be made by metrics; they must
be left to smarter entities such as software project managers.

CRITICISMS

Software metrics tend to be used as an aid in judging the
quality of software development. Metrics are relatively easy
to produce, but their use as a management instrument has
drawbacks:

� Unethical: It is said to be unethical to reduce a
person’s performance to a small number of
numerical variables and then judge him/her by that
measure. A supervisor may assign the most talented
programmer to the hardest tasks on a project, which
means it may take the longest time to develop the
task and may generate the most defects due to the
difficulty of the task. Uninformed managers
overseeing the project might then judge the
programmer as performing poorly without
consulting the supervisor who has the full picture.

� Demeaning: “Management by numbers”
without regard to the quality of experience of the
employees, instead of “managing people.”

� Gaming: The measurement process is biased
because of employees seeking to maximize
management’s perception of their performances.
For example, if lines of code are used to judge
performance, then employees will write as many
separate lines of code as possible, and if they find
a way to shorten their code, they may not use it.

� Inaccurate: No known metrics are both
meaningful and accurate. Lines of code measure
exactly what is typed, but not the difficulty of
the problem. Function points were developed to
better measure the complexity of the code or
specification, but they require personal judgment
to use well. Different estimators will produce
different results. This makes function points hard
to use fairly and unlikely to be used well by
everyone.

� Uneconomical/Suboptimal: It has been argued
that when the economic value of measurements are
computed using proven methods from decision

	�	������	�
�
�����������
�����
������
���
�
�������	
���
������ ���

COM6\D:\HARESH\11-JITKM

theory, measuring software developer performance
turns out to be a much lower priority than
measuring uncertain benefits and risks.

REFERENCES

[1] Stephen P. Berczuk (with Brad Appleton), 2003. Software
Configuration Management Patterns: Effective Teamwork,
Practical Integration. Addison-Wesley, 2003.

[2] John D. McGregor. The Evolution of Product Line Assets,
Software Engineering Institute, CMU/SEI-2003-TR-005,
2003.

[3] Jitender Kumar Chhabra, K. K. Aggarwal and Yogesh Singh,
Measurement of Object-Oriented Software Spatial
Complexity. Information and Software Technology, 46 (10),
(2004) 689-699.

[4] S. R. Schach, Introduction to Object-Oriented Analysis and
Design. Tata, McGraw-Hill, 2004.

[5] Object Management Group. Software Process Engineering
Meta-Model v. 1.1, 2005.

[6] K. K. Aggarwal, Yogesh Singh, Pravin Chandra, Manimala
Puri: An Expert Committee Model to Estimate Lines of
Code. ACM SIGSOFT Software Engineering Notes 30(5):
1-4 (2005).

[7] www.eclipse.org. Eclipse Process Framework 1.0, 2006.

[8] Kannan Mohan and Balasubramaniam Ramesh. Change
Management Patterns in Software Product Lines,
Communications of the ACM, 49 (12), 2006.

[9] Software Engineering Institute, “Framework for Product
Line Practice,” http://www.sei.cmu.edu/productlines, 2006.

[10] Shakti Kumar, K. K. Aggarwal, Jagatpreet Singh: A Matlab
Implementation of Swarm Intelligence based Methodology
for Identification of Optimized Fuzzy Models. Swarm
Intelligent Systems 2006: 175-184.

[11] K. K. Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika
Malhotra: Software Design Metrics for Object-Oriented
Software. Journal of Object Technology, 6(1) (2007).

